L
Initializing Studio...
Complete guide to using LangTrain's Python SDK for model training and deployment.
1pip install langtrain-ai23# Or install with optional dependencies4pip install langtrain-ai[gpu] # For GPU support5pip install langtrain-ai[dev] # For development tools
1import langtrain23# Initialize client4client = langtrain.Client(api_key="your-api-key")56# Start a fine-tuning job7job = client.fine_tune.create(8 model="llama-2-7b",9 dataset="your-dataset-id",10 config={11 "learning_rate": 2e-5,12 "batch_size": 4,13 "epochs": 314 }15)1617print(f"Fine-tuning job started: {job.id}")
1# Upload dataset2dataset = client.datasets.upload(3 file_path="training_data.jsonl",4 name="my-dataset"5)67# Create fine-tuning job with LoRA8job = client.fine_tune.create(9 model="mistral-7b",10 dataset=dataset.id,11 config={12 "method": "lora",13 "rank": 16,14 "alpha": 32,15 "learning_rate": 1e-4,16 "max_steps": 100017 }18)1920# Monitor progress21while job.status == "running":22 job = client.fine_tune.get(job.id)23 print(f"Progress: {job.progress}%")24 time.sleep(30)
1# Load fine-tuned model2model = client.models.get("your-model-id")34# Single inference5response = model.generate(6 prompt="What is the capital of France?",7 max_tokens=100,8 temperature=0.79)1011print(response.text)1213# Streaming inference14for chunk in model.stream(prompt="Tell me a story"):15 print(chunk.text, end="", flush=True)
1from langtrain.exceptions import (2 AuthenticationError,3 RateLimitError,4 ModelNotFoundError5)67try:8 job = client.fine_tune.create(...)9except AuthenticationError:10 print("Invalid API key")11except RateLimitError as e:12 print(f"Rate limited. Retry after {e.retry_after} seconds")13except ModelNotFoundError:14 print("Model not found")15except Exception as e:16 print(f"Unexpected error: {e}")