L
000
Initializing Studio...
The official Python SDK for training, deploying, and managing AI models with Langtrain.
1pip install langtrain-ai23# With GPU support4pip install langtrain-ai[gpu]56# Verify installation7python -c "import langtrain; print(langtrain.__version__)"
1import langtrain23# Option 1: Environment variable (recommended)4# export LANGTRAIN_API_KEY=your-api-key56# Option 2: Direct configuration7langtrain.api_key = "your-api-key"89# Option 3: Client initialization10client = langtrain.Client(api_key="your-api-key")
1from langtrain import LoRATrainer23# Initialize trainer with base model4trainer = LoRATrainer(5 model="meta-llama/Llama-3.3-8B",6 output_dir="./my-model"7)89# Train on your data10trainer.train("training_data.jsonl")1112# Save the trained model13trainer.save()14trainer.push("my-custom-model") # Upload to Langtrain Cloud
1from langtrain import Dataset23# Upload a dataset4dataset = Dataset.upload(5 file_path="data.jsonl",6 name="customer-support-v1"7)89print(f"Dataset ID: {dataset.id}")10print(f"Rows: {dataset.row_count}")1112# List all datasets13datasets = Dataset.list()14for ds in datasets:15 print(f"- {ds.name} ({ds.status})")
1from langtrain import TrainingJob2import time34# Create a training job5job = TrainingJob.create(6 model_id="llama-3.3-8b",7 dataset_id=dataset.id,8 config={9 "method": "qlora",10 "epochs": 3,11 "learning_rate": 2e-4,12 "batch_size": 413 }14)1516# Monitor progress17while job.status in ["pending", "running"]:18 job.refresh()19 print(f"Status: {job.status}, Progress: {job.progress}%")20 time.sleep(30)2122print(f"Training completed: {job.model_id}")
1from langtrain import Model23# Load your model4model = Model.load("my-custom-model")56# Generate text7response = model.generate(8 prompt="Explain machine learning",9 max_tokens=200,10 temperature=0.711)12print(response)1314# Chat interface15messages = [{"role": "user", "content": "Hello!"}]16response = model.chat(messages)17print(response["content"])1819# Streaming20for chunk in model.stream("Tell me a story"):21 print(chunk, end="", flush=True)
1import asyncio2from langtrain import AsyncClient34async def main():5 client = AsyncClient()67 # Async generation8 response = await client.generate(9 model="my-model",10 prompt="Explain async programming"11 )12 print(response)1314 # Async streaming15 async for chunk in client.stream("Tell me about Python"):16 print(chunk, end="")1718asyncio.run(main())
1from langtrain.exceptions import (2 AuthenticationError,3 RateLimitError,4 ValidationError,5 NotFoundError6)78try:9 job = TrainingJob.create(...)10except AuthenticationError:11 print("Invalid API key")12except RateLimitError as e:13 print(f"Rate limited, retry in {e.retry_after}s")14except ValidationError as e:15 print(f"Invalid config: {e.message}")16except NotFoundError:17 print("Model or dataset not found")