L

Initializing Studio...

Documentation

Getting Started

  • Introduction
  • Quick Start
  • Installation

Fine-tuning

  • LoRA & QLoRA
  • Full Fine-tuning

API & SDK

  • REST API
  • Python SDK

Deployment

  • Cloud Deployment
  • Security

Resources

  • FAQ
  • Changelog

Building Chat Models

Complete tutorial on creating conversational AI models with LangTrain. Learn to fine-tune chat models, implement conversation handling, and deploy interactive chatbots.

💬

Conversation AI

Build sophisticated chat models that understand context and maintain engaging conversations.

🔄

Multi-turn Dialog

Handle complex multi-turn conversations with memory and context awareness.

🎭

Personality Tuning

Customize your chatbot's personality, tone, and response style through fine-tuning.

🚀

Production Ready

Deploy chat models with streaming responses, safety filters, and scalable infrastructure.

Understanding Chat Model Architecture

Chat models are autoregressive language models fine-tuned specifically for conversational interactions. Unlike general text generation, chat models are trained to understand conversation structure, context, and turn-taking.

Key components include conversation history management, response generation, and safety filtering.
python
1# Chat model architecture components
2from langtrain.chat import (
3 ConversationManager,
4 ResponseGenerator,
5 SafetyFilter,
6 ChatModel
7)
8
9# Initialize chat components
10conversation_mgr = ConversationManager(
11 max_history=10, # Keep last 10 exchanges
12 context_window=2048, # Token limit for context
13 memory_type="sliding" # How to handle long conversations
14)
15
16response_gen = ResponseGenerator(
17 model_name="microsoft/DialoGPT-large",
18 temperature=0.7, # Response creativity
19 max_length=150, # Response length limit
20 repetition_penalty=1.2 # Avoid repetitive responses
21)
22
23safety_filter = SafetyFilter(
24 filter_toxic=True, # Block toxic content
25 filter_personal=True, # Remove personal info
26 custom_filters=[] # Add custom filters
27)
28
29# Combine into chat model
30chat_model = ChatModel(
31 conversation_manager=conversation_mgr,
32 response_generator=response_gen,
33 safety_filter=safety_filter
34)

Preparing Conversation Data

Quality conversation data is crucial for training effective chat models. LangTrain provides tools to format, validate, and augment conversation datasets.

Data Format: Use the standard conversation format with user and assistant roles for consistency.
python
1from langtrain.data import ConversationDataset, ConversationProcessor
2
3# Example conversation data format
4conversations = [
5 {
6 "id": "conv_001",
7 "messages": [
8 {"role": "user", "content": "Hello! How are you today?"},
9 {"role": "assistant", "content": "Hello! I'm doing well, thank you for asking. How can I help you today?"},
10 {"role": "user", "content": "I need help with my Python code"},
11 {"role": "assistant", "content": "I'd be happy to help with your Python code! Please share what you're working on."}
12 ],
13 "metadata": {
14 "domain": "programming_help",
15 "quality_score": 8.5,
16 "language": "en"
17 }
18 }
19]
20
21# Process conversation data
22processor = ConversationProcessor(
23 max_turns=20, # Maximum turns per conversation
24 min_turn_length=5, # Minimum tokens per turn
25 quality_threshold=7.0, # Quality filtering
26 balance_speakers=True # Ensure balanced conversations
27)
28
29# Create dataset
30dataset = ConversationDataset.from_conversations(
31 conversations,
32 processor=processor,
33 train_split=0.8,
34 validation_split=0.1,
35 test_split=0.1
36)
37
38# Data augmentation for better training
39augmented_dataset = processor.augment_conversations(
40 dataset,
41 techniques=[
42 "paraphrase_user_inputs", # Rephrase user messages
43 "add_conversation_starters", # Generate opening messages
44 "expand_short_responses", # Elaborate brief responses
45 "inject_persona_consistency" # Maintain character consistency
46 ]
47)
48
49print(f"Original dataset: {len(dataset)} conversations")
50print(f"Augmented dataset: {len(augmented_dataset)} conversations")

Fine-tuning for Conversations

Fine-tune a base language model specifically for conversational tasks. This involves conversation-aware training where the model learns to generate appropriate responses in context.

Key Training Strategies: Use conversation templates, turn-based loss calculation, and response quality metrics.
python
1from langtrain import ConversationalTrainer
2from langtrain.models import AutoModelForCausalLM
3from transformers import AutoTokenizer
4
5# Initialize conversational trainer
6trainer = ConversationalTrainer(
7 model_name="microsoft/DialoGPT-medium",
8
9 # Conversation-specific settings
10 conversation_template="chatml", # or "alpaca", "vicuna"
11 max_conversation_length=2048,
12 response_max_length=256,
13
14 # Training parameters
15 num_epochs=3,
16 batch_size=4,
17 gradient_accumulation_steps=4,
18 learning_rate=5e-5,
19 warmup_ratio=0.1,
20
21 # Conversation-aware training
22 turn_based_loss=True, # Calculate loss per turn
23 context_aware_training=True, # Use full conversation context
24 response_quality_weighting=True, # Weight high-quality responses more
25
26 # Output settings
27 output_dir="./models/my-chatbot",
28 save_steps=500,
29 eval_steps=250,
30 logging_steps=50
31)
32
33# Prepare conversation data for training
34train_dataset = trainer.prepare_conversation_data(
35 conversations=augmented_dataset["train"],
36 tokenizer_name="microsoft/DialoGPT-medium",
37 add_special_tokens=True,
38 padding_strategy="longest"
39)
40
41eval_dataset = trainer.prepare_conversation_data(
42 conversations=augmented_dataset["validation"],
43 tokenizer_name="microsoft/DialoGPT-medium"
44)
45
46# Custom conversation metrics
47def compute_conversation_metrics(eval_pred):
48 predictions, labels = eval_pred
49
50 # Calculate conversation-specific metrics
51 bleu_score = trainer.calculate_bleu(predictions, labels)
52 rouge_scores = trainer.calculate_rouge(predictions, labels)
53 perplexity = trainer.calculate_perplexity(predictions, labels)
54 coherence_score = trainer.calculate_coherence(predictions, labels)
55
56 return {
57 "bleu": bleu_score,
58 "rouge_l": rouge_scores["rouge_l"],
59 "perplexity": perplexity,
60 "coherence": coherence_score
61 }
62
63trainer.compute_metrics = compute_conversation_metrics
64
65# Start conversational fine-tuning
66trainer.train(
67 train_dataset=train_dataset,
68 eval_dataset=eval_dataset
69)
70
71# Save the conversational model
72trainer.save_model()
73trainer.save_conversation_config()

On this page

Understanding Chat Model ArchitecturePreparing Conversation DataFine-tuning for Conversations