L
Initializing Studio...
Complete tutorial on creating conversational AI models with LangTrain. Learn to fine-tune chat models, implement conversation handling, and deploy interactive chatbots.
Build sophisticated chat models that understand context and maintain engaging conversations.
Handle complex multi-turn conversations with memory and context awareness.
Customize your chatbot's personality, tone, and response style through fine-tuning.
Deploy chat models with streaming responses, safety filters, and scalable infrastructure.
1# Chat model architecture components2from langtrain.chat import (3 ConversationManager,4 ResponseGenerator,5 SafetyFilter,6 ChatModel7)89# Initialize chat components10conversation_mgr = ConversationManager(11 max_history=10, # Keep last 10 exchanges12 context_window=2048, # Token limit for context13 memory_type="sliding" # How to handle long conversations14)1516response_gen = ResponseGenerator(17 model_name="microsoft/DialoGPT-large",18 temperature=0.7, # Response creativity19 max_length=150, # Response length limit20 repetition_penalty=1.2 # Avoid repetitive responses21)2223safety_filter = SafetyFilter(24 filter_toxic=True, # Block toxic content25 filter_personal=True, # Remove personal info26 custom_filters=[] # Add custom filters27)2829# Combine into chat model30chat_model = ChatModel(31 conversation_manager=conversation_mgr,32 response_generator=response_gen,33 safety_filter=safety_filter34)
1from langtrain.data import ConversationDataset, ConversationProcessor23# Example conversation data format4conversations = [5 {6 "id": "conv_001",7 "messages": [8 {"role": "user", "content": "Hello! How are you today?"},9 {"role": "assistant", "content": "Hello! I'm doing well, thank you for asking. How can I help you today?"},10 {"role": "user", "content": "I need help with my Python code"},11 {"role": "assistant", "content": "I'd be happy to help with your Python code! Please share what you're working on."}12 ],13 "metadata": {14 "domain": "programming_help",15 "quality_score": 8.5,16 "language": "en"17 }18 }19]2021# Process conversation data22processor = ConversationProcessor(23 max_turns=20, # Maximum turns per conversation24 min_turn_length=5, # Minimum tokens per turn25 quality_threshold=7.0, # Quality filtering26 balance_speakers=True # Ensure balanced conversations27)2829# Create dataset30dataset = ConversationDataset.from_conversations(31 conversations,32 processor=processor,33 train_split=0.8,34 validation_split=0.1,35 test_split=0.136)3738# Data augmentation for better training39augmented_dataset = processor.augment_conversations(40 dataset,41 techniques=[42 "paraphrase_user_inputs", # Rephrase user messages43 "add_conversation_starters", # Generate opening messages44 "expand_short_responses", # Elaborate brief responses45 "inject_persona_consistency" # Maintain character consistency46 ]47)4849print(f"Original dataset: {len(dataset)} conversations")50print(f"Augmented dataset: {len(augmented_dataset)} conversations")
1from langtrain import ConversationalTrainer2from langtrain.models import AutoModelForCausalLM3from transformers import AutoTokenizer45# Initialize conversational trainer6trainer = ConversationalTrainer(7 model_name="microsoft/DialoGPT-medium",89 # Conversation-specific settings10 conversation_template="chatml", # or "alpaca", "vicuna"11 max_conversation_length=2048,12 response_max_length=256,1314 # Training parameters15 num_epochs=3,16 batch_size=4,17 gradient_accumulation_steps=4,18 learning_rate=5e-5,19 warmup_ratio=0.1,2021 # Conversation-aware training22 turn_based_loss=True, # Calculate loss per turn23 context_aware_training=True, # Use full conversation context24 response_quality_weighting=True, # Weight high-quality responses more2526 # Output settings27 output_dir="./models/my-chatbot",28 save_steps=500,29 eval_steps=250,30 logging_steps=5031)3233# Prepare conversation data for training34train_dataset = trainer.prepare_conversation_data(35 conversations=augmented_dataset["train"],36 tokenizer_name="microsoft/DialoGPT-medium",37 add_special_tokens=True,38 padding_strategy="longest"39)4041eval_dataset = trainer.prepare_conversation_data(42 conversations=augmented_dataset["validation"],43 tokenizer_name="microsoft/DialoGPT-medium"44)4546# Custom conversation metrics47def compute_conversation_metrics(eval_pred):48 predictions, labels = eval_pred4950 # Calculate conversation-specific metrics51 bleu_score = trainer.calculate_bleu(predictions, labels)52 rouge_scores = trainer.calculate_rouge(predictions, labels)53 perplexity = trainer.calculate_perplexity(predictions, labels)54 coherence_score = trainer.calculate_coherence(predictions, labels)5556 return {57 "bleu": bleu_score,58 "rouge_l": rouge_scores["rouge_l"],59 "perplexity": perplexity,60 "coherence": coherence_score61 }6263trainer.compute_metrics = compute_conversation_metrics6465# Start conversational fine-tuning66trainer.train(67 train_dataset=train_dataset,68 eval_dataset=eval_dataset69)7071# Save the conversational model72trainer.save_model()73trainer.save_conversation_config()