L

Initializing Studio...

Docs

Getting Started

  • Introduction
  • Quick Start
  • Installation

Fine-tuning

  • LoRA & QLoRA
  • Full Fine-tuning

API & SDK

  • REST API
  • Python SDK

Deployment

  • Cloud Deployment
  • Security

Resources

  • FAQ
  • Changelog
Docs

Getting Started

  • Introduction
  • Quick Start
  • Installation

Fine-tuning

  • LoRA & QLoRA
  • Full Fine-tuning

API & SDK

  • REST API
  • Python SDK

Deployment

  • Cloud Deployment
  • Security

Resources

  • FAQ
  • Changelog

LLM Training

Master Large Language Model training including pre-training, fine-tuning, and alignment techniques with modern optimization strategies.

LLM Training Pipeline

The complete LLM training pipeline consists of multiple stages:

1. Pre-training (Foundation Models)
- Causal Language Modeling: Next-token prediction on massive text corpora
- Masked Language Modeling: BERT-style bidirectional training (less common for modern LLMs)
- Mixture of Experts (MoE): Scale model capacity while maintaining computational efficiency
- Scale Laws: Optimal compute allocation following Chinchilla scaling laws

2. Supervised Fine-Tuning (SFT)
- Train on high-quality instruction-response pairs
- Format data as conversation turns or prompt-completion pairs
- Preserve pre-trained knowledge while learning task-specific behaviors
- Typical dataset sizes: 10K-100K examples

3. Alignment Training
- Reinforcement Learning from Human Feedback (RLHF): Optimize for human preferences
- Direct Preference Optimization (DPO): Simpler alternative to RLHF
- Constitutional AI: Self-improvement through critique and revision
- Red Team Testing: Evaluate safety and robustness

4. Deployment Optimization
- Model Quantization: INT8/INT4 precision for inference speedup
- Knowledge Distillation: Transfer knowledge to smaller models
- Speculative Decoding: Accelerate generation with draft models

Training Paradigms & Architectures

Modern LLM training leverages advanced architectures and training strategies:

Transformer Architectures:
- Decoder-Only: GPT-style autoregressive models (GPT-4, LLaMA, PaLM)
- Encoder-Decoder: T5-style sequence-to-sequence models
- Encoder-Only: BERT-style models for understanding tasks
- Mixture of Experts (MoE): Switch Transformer, GLaM, PaLM-2

Training Strategies:
- Autoregressive Training: Next-token prediction with teacher forcing
- Prefix LM: Bidirectional encoding + autoregressive generation
- GLM: General Language Model with blank infilling objectives
- PaLM: Pathways Language Model with sparsely activated experts

Scaling Techniques:
- Data Parallelism: Distribute batches across multiple GPUs/TPUs
- Model Parallelism: Split model layers across devices
- Pipeline Parallelism: Stage model execution across pipeline stages
- Tensor Parallelism: Distribute individual operations across devices
- 3D Parallelism: Combine data, model, and pipeline parallelism

Memory Optimization:
- ZeRO: Zero Redundancy Optimizer for distributed training
- Gradient Checkpointing: Trade computation for memory
- Mixed Precision: FP16/BF16 training with loss scaling
- CPU Offloading: Move optimizer states and gradients to CPU

Advanced Optimization for LLMs

State-of-the-art optimization techniques for efficient LLM training:

Modern Optimizers:
- AdamW: Weight decay decoupled from gradient-based update
- Lion: Evolved sign momentum optimizer with better generalization
- Adafactor: Memory-efficient adaptive learning rate with factorized second moments
- 8-bit Adam: Memory-efficient optimizer using 8-bit statistics
- Sophia: Second-order optimizer designed for language model pre-training

Learning Rate Scheduling:
- Cosine Annealing: Smooth decay following cosine curve
- Linear Warmup: Gradual increase from 0 to max LR over warmup steps
- Inverse Square Root: Decay proportional to 1/√step used in Transformer training
- Polynomial Decay: Polynomial learning rate schedule with configurable power
- OneCycleLR: Single cycle with peak learning rate in middle of training

Gradient Management:
- Gradient Clipping: Clip by norm (typically 1.0) to prevent exploding gradients
- Gradient Accumulation: Simulate larger batch sizes across multiple micro-batches
- Gradient Checkpointing: Recompute activations during backward pass to save memory
- Stochastic Weight Averaging (SWA): Average model weights over training trajectory

Memory Optimization:
- DeepSpeed ZeRO: Partition optimizer states, gradients, and parameters
- Fully Sharded Data Parallel (FSDP): PyTorch's native ZeRO implementation
- CPU Offloading: Move inactive parameters and optimizer states to CPU
- Activation Checkpointing: Store subset of activations and recompute rest

LLM Training Monitoring & Evaluation

Comprehensive monitoring for large-scale language model training:

Language Modeling Metrics:
- Perplexity: Primary metric for autoregressive language models (lower is better)
- Cross-Entropy Loss: Standard training objective for next-token prediction
- Bits per Character/Byte: Information-theoretic measure of compression
- BLEU/ROUGE Scores: Evaluation on downstream generation tasks
- Token Accuracy: Percentage of correctly predicted tokens

Training Dynamics:
- Learning Rate Schedule: Track adaptive learning rate changes
- Gradient Norm: Monitor gradient magnitudes to detect vanishing/exploding gradients
- Parameter Updates: Ratio of update magnitude to parameter magnitude
- Loss Spikes: Detect and recover from training instabilities
- Throughput: Tokens per second, samples per second, FLOPs utilization

Resource Utilization:
- GPU Memory: Track peak memory usage and memory fragmentation
- Communication Overhead: Time spent on gradient synchronization
- Pipeline Efficiency: Utilization across pipeline stages
- I/O Bottlenecks: Data loading and checkpointing performance

Model Quality Assessment:
- Downstream Task Performance: Evaluation on held-out benchmarks
- Human Evaluation: Quality ratings from human annotators
- Safety Metrics: Toxicity, bias, and harmful content detection
- Calibration: Confidence score alignment with actual correctness

Full Examples

Pre-training LLM from Scratch

python
1import langtrain
2from langtrain.models import LlamaForCausalLM
3from langtrain.data import PretrainingDataset
4import torch
5
6# Configure model architecture
7config = langtrain.LlamaConfig(
8 vocab_size=32000,
9 hidden_size=4096,
10 intermediate_size=11008,
11 num_hidden_layers=32,
12 num_attention_heads=32,
13 max_position_embeddings=4096,
14 rms_norm_eps=1e-6,
15 rope_theta=10000.0,
16 attention_dropout=0.0,
17 hidden_dropout=0.0
18)
19
20# Initialize model with proper weight initialization
21model = LlamaForCausalLM(config)
22model.apply(lambda m: langtrain.init_weights(m, config))
23
24# Prepare pre-training dataset
25dataset = PretrainingDataset(
26 data_path="path/to/tokenized_data",
27 seq_length=4096,
28 tokenizer=tokenizer,
29 pack_sequences=True, # Pack multiple documents
30 shuffle_buffer_size=10000
31)
32
33# Configure training with modern optimizations
34training_args = langtrain.TrainingArguments(
35 output_dir="./llama-7b-pretrain",
36 per_device_train_batch_size=8,
37 gradient_accumulation_steps=16, # Effective batch size: 8*16*num_gpus
38 max_steps=100000,
39 learning_rate=3e-4,
40 weight_decay=0.1,
41 warmup_steps=2000,
42 lr_scheduler_type="cosine",
43 bf16=True, # Use bfloat16 for numerical stability
44 dataloader_num_workers=4,
45 gradient_checkpointing=True,
46 optim="adamw_torch_fused", # Fused AdamW for efficiency
47 logging_steps=10,
48 save_steps=5000,
49 max_grad_norm=1.0
50)
51
52# Initialize trainer with distributed support
53trainer = langtrain.Trainer(
54 model=model,
55 args=training_args,
56 train_dataset=dataset,
57 tokenizer=tokenizer
58)
59
60# Start pre-training
61trainer.train()

Distributed Training with DeepSpeed

python
1import deepspeed
2from langtrain.distributed import setup_distributed_training
3
4# DeepSpeed ZeRO configuration
5ds_config = {
6 "train_batch_size": 512,
7 "train_micro_batch_size_per_gpu": 4,
8 "gradient_accumulation_steps": 32,
9
10 "optimizer": {
11 "type": "AdamW",
12 "params": {
13 "lr": 3e-4,
14 "betas": [0.9, 0.95],
15 "eps": 1e-8,
16 "weight_decay": 0.1
17 }
18 },
19
20 "scheduler": {
21 "type": "WarmupDecayLR",
22 "params": {
23 "warmup_min_lr": 0,
24 "warmup_max_lr": 3e-4,
25 "warmup_num_steps": 2000,
26 "total_num_steps": 100000
27 }
28 },
29
30 "zero_optimization": {
31 "stage": 2, # ZeRO-2: shard gradients and optimizer states
32 "offload_optimizer": {
33 "device": "cpu", # Offload optimizer to CPU
34 "pin_memory": True
35 },
36 "allgather_partitions": True,
37 "reduce_scatter": True,
38 "overlap_comm": True,
39 "contiguous_gradients": True
40 },
41
42 "fp16": {
43 "enabled": True,
44 "auto_cast": True,
45 "loss_scale": 0,
46 "initial_scale_power": 16,
47 "loss_scale_window": 1000,
48 "hysteresis": 2,
49 "min_loss_scale": 1
50 },
51
52 "gradient_clipping": 1.0,
53 "wall_clock_breakdown": False
54}
55
56# Initialize distributed training
57setup_distributed_training()
58
59# Initialize DeepSpeed engine
60model_engine, optimizer, _, _ = deepspeed.initialize(
61 model=model,
62 config=ds_config,
63 model_parameters=model.parameters()
64)
65
66# Training loop with DeepSpeed
67for step, batch in enumerate(dataloader):
68 loss = model_engine(batch)
69 model_engine.backward(loss)
70 model_engine.step()
71
72 if step % 100 == 0:
73 print(f"Step {step}, Loss: {loss.item():.4f}")
74
75 if step % 5000 == 0:
76 model_engine.save_checkpoint("./checkpoints", step)
77
78# Train with real-time monitoring
79for epoch in trainer.train_epochs():
80 print(f"Epoch {epoch.number}: Loss={epoch.loss:.4f}")
81
82 # Adjust parameters if needed
83 if epoch.loss > 0.5:
84 trainer.adjust_learning_rate(0.8) # Reduce by 20%

Advanced Training Configuration

python
1# Advanced training with custom configuration
2training_config = langtrain.TrainingConfig(
3 # Optimization
4 optimizer="adamw",
5 learning_rate=2e-5,
6 weight_decay=0.01,
7
8 # Scheduling
9 lr_scheduler="cosine",
10 warmup_steps=1000,
11
12 # Efficiency
13 mixed_precision=True,
14 gradient_checkpointing=True,
15 dataloader_num_workers=8,
16
17 # Monitoring
18 eval_steps=500,
19 save_steps=1000,
20 logging_steps=100
21)
22
23trainer = langtrain.Trainer(
24 model=model,
25 config=training_config,
26 callbacks=[
27 langtrain.EarlyStoppingCallback(patience=3),
28 langtrain.ModelCheckpointCallback(save_best=True),
29 langtrain.WandbCallback(project="my-project")
30 ]
31)
32
33results = trainer.train()

Distributed Training

bash
1# Multi-GPU training
2langtrain train \
3 --config config.yaml \
4 --distributed \
5 --num-gpus 4 \
6 --backend nccl
7
8# Multi-node training
9langtrain train \
10 --config config.yaml \
11 --distributed \
12 --num-nodes 2 \
13 --node-rank 0 \
14 --master-addr "192.168.1.100" \
15 --master-port 29500
Previous
Core Concepts
Next
Model Types

On this page

LLM Training PipelineTraining Paradigms & ArchitecturesAdvanced Optimization for LLMsLLM Training Monitoring & Evaluation