L
Initializing Studio...
Understanding these fundamental concepts will help you make the most of LangTrain's platform for training and deploying AI models.
All ML concepts integrated in one coherent platform
Automatic hyperparameter tuning and model optimization
From prototype to production with the same tools
Track everything from training to production performance
1import langtrain23client = langtrain.LangTrain()45# Create a text classification model6model = client.models.create(7 name="email-classifier",8 type="text-classification",9 description="Classify emails as spam or not spam",10 labels=["spam", "not_spam"]11)1213print(f"Created model: {model.id}")
1# Upload training data2dataset = client.datasets.upload(3 name="email-training-data",4 file_path="./email_data.json",5 format="json"6)78# Preview dataset9preview = dataset.preview(n_samples=5)10print("Sample data:")11for sample in preview:12 print(f"Text: {sample['text'][:50]}...")13 print(f"Label: {sample['label']}")1415# Get dataset statistics16stats = dataset.get_stats()17print(f"Total samples: {stats['total_samples']}")18print(f"Label distribution: {stats['label_distribution']}")
1# Start training with automatic evaluation2training_job = model.train(3 dataset_id=dataset.id,4 validation_split=0.2,5 auto_tune=True,6 evaluation_metrics=["accuracy", "f1", "precision", "recall"]7)89# Monitor training progress10for update in training_job.stream_progress():11 print(f"Step {update.step}: Loss={update.loss:.4f}, Accuracy={update.accuracy:.3f}")1213# Get final evaluation results14results = training_job.get_results()15print(f"Final accuracy: {results.metrics['accuracy']:.3f}")16print(f"F1 score: {results.metrics['f1']:.3f}")
1# Fine-tune from a pre-trained model2model = client.models.create(3 name="custom-sentiment-model",4 type="text-classification",5 base_model="bert-base-uncased", # Start from pre-trained BERT6 fine_tuning_config={7 "learning_rate": 2e-5,8 "num_epochs": 3,9 "strategy": "full" # or "lora" for efficient tuning10 }11)1213# Train on your specific data14training_job = model.fine_tune(15 dataset_id=your_dataset.id,16 validation_split=0.1517)1819print(f"Fine-tuning started: {training_job.id}")